SPECIFICATION OF SMD MICROPHONE

(TO :)

MODEL NO. : (S)SPOB- 413S44- RC3310
DIRECTIVITY : OMNI- DIRECTIONAL

<table>
<thead>
<tr>
<th></th>
<th>Prepared</th>
<th>Checked</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sign.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BSE CO., LTD
626-3 58B-4L, Gozan-dong, Namdong-Ku
INCHEON-City. KOREA
TEL : (8232) 500-1965
FAX : (8232) 500-1898

4 0 5 - 8 1 7
SPECIFICATION HISTORY

<table>
<thead>
<tr>
<th>History Change</th>
<th>Date</th>
<th>Item</th>
<th>Contents</th>
<th>Grounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSUE From BSE To</td>
<td>2007.08.22</td>
<td>(S)SPOB-413S44-RC3310</td>
<td>1st Submission of Microphone spec.</td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISSUE From To</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microphone Technology Leadership
CONTENTS

1. SCOPE
2. MODEL NO.
3. ELECTRICAL CHARACTERISTICS
 3.1 Sensitivity
 3.2 Output Impedance
 3.3 Current Consumption
 3.4 Signal to Noise Ratio
 3.5 Decreasing Voltage
 3.6 Operating Voltage
 3.7 Maximum input S.P.L.

4. MEASUREMENT CIRCUIT
5. TYPICAL FREQUENCY RESPONSE CURVE (FAR FIELD)
6. MECHANICAL CHARACTERISTICS
7. RELIABILITY TEST
 7.1 Vibration Test
 7.2 Drop Test
 7.3 Temperature Test
 7.4 Temperature Cycle
 7.5 Temperature shock test
 7.6 Humidity test

8. TEMPERATURE CONDITIONS
 8.1 Storage Temperature
 8.2 Operating Temperature

9. MEASUREMENT SYSTEM
10. REFLOW PROFILE(Guaranteed Maximum Reflow Condition)
11. CAUTION WITH USING SMD MICROPHONE (ELECTRET CONDENSER MICROPHONE)
12. PACKAGE

Microphone Technology Leadership
1. INTRODUCTION
This specification is for the SMD possible Electret Condenser Microphone (ECM) which has endurable reflow temperature of up to 250°C for under 30 seconds.

2. MODEL NO.
(S)SPOB-413S44-RC3310

3. ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>NO.</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sensitivity</td>
<td>S</td>
<td>f=1 Hz, S.P.L =1Pa, Q = 1V/Pa</td>
<td>-48</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>Output impedance</td>
<td>Z_{OUT}</td>
<td>f=1 Hz</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Current Consumption</td>
<td>I_{dss}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V_{cc}=2.0V, R_{L} = 2.2Ω</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Signal to Noise Ratio</td>
<td>S/N</td>
<td>f=1 Hz, S.P.L =1Pa</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(A-Weighted Curve)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Decreasing Voltage</td>
<td>ΔS- VS</td>
<td>V_{cc}=2.0V to 1.5V</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Operating Voltage</td>
<td></td>
<td>V_{cc}=2.0V to 1.5V</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Maximum input S.P.L.</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

4. MEASUREMENT CIRCUIT

![Diagram of measurement circuit]

Microphone Technology Leadership
5. TYPICAL FREQUENCY RESPONSE CURVE (FAR FIELD)

Far Field Measurement Condition
Temperature : 23 ± 2 °C
Bias Voltage : 2.0V (with 2.2Ω series resistor)
Acoustic stimulus : 1Pa (94dB SPL at 1m) at 50 cm from the loud-speaker.
 The loud-speaker must be calibrated to make a flat frequency response input signal
Position : The frequency response of microphone unit measured at 50cm from the loud-speaker

6. MECHANICAL CHARACTERISTICS

■ SMD Type

<table>
<thead>
<tr>
<th></th>
<th>(S)SPOB- 413S44- RC3310</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3±0.1</td>
<td></td>
</tr>
<tr>
<td>4±0.1</td>
<td></td>
</tr>
</tbody>
</table>

Microphone Technology Leadership
7. RELIABILITY TEST

7.1 VIBRATION TEST

To be no interference in operation after vibrations. 10° to 55° for 1 minute full amplitude 1.52", for 2 hours at three axes

7.2 DROP TEST

To be no interference in operation after dropped to concrete floor each one time from 1 meter height at three directions in state of packing

7.3 TEMPERATURE TEST

- After exposure at 70°C for 200 hours, sensitivity to be within ±3% from initial sensitivity. (The measurement to be done after 2 hours of conditioning at room temperature)

- After exposure at -25°C for 200 hours, sensitivity to be within ±3% from initial sensitivity. (The measurement to be done after 2 hours of conditioning at room temperature)

7.4 HUMIDITY TEST

After exposure at 70°C and 90 to 95% relative humidity for 240 hours, sensitivity to be within ±3% from initial sensitivity.

7.5 TEMPERATURE CYCLE TEST

After exposure at -25°C for 30 minutes, at 20°C for 10 minutes, at 70°C for 30 minutes, at 20°C for 10 minutes. 5 cycles, sensitivity to be within ±3% from initial sensitivity (The measurement to be done after 2 hours of conditioning at room temperature)

7.6 TEMPERATURE SHOCK

Temperature change from -40°C to 85°C for 30 minutes. (changing time : 20 sec.) After 32 cycles, sensitivity to be within ±3% from initial sensitivity (The measurement to be done after 2 hours of conditioning at room temperature)

8. TEMPERATURE CONDITIONS

8.1 STORAGE TEMPERATURE : -40°C ~ +85°C

8.2 OPERATING TEMPERATURE : -25°C ~ +70°C
9. MEASUREMENT SYSTEM

![Diagram of measurement system]

10. REFLOW PROFILE (Guaranteed Maximum Reflow Condition)

<table>
<thead>
<tr>
<th>Setting Temperature at Peak</th>
<th>Depend on the user conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Temperature to Microphone</td>
<td>240°C ~ 250°C</td>
</tr>
<tr>
<td>Duration at Peak Temperature</td>
<td>≤ 30 sec</td>
</tr>
<tr>
<td>Total Duration Period</td>
<td>6 minutes</td>
</tr>
</tbody>
</table>

Microphone Technology Leadership
11. CAUTIONS WITH USING SMD MICROPHONE

11-1 X-ray inspection

- X-ray inspection is possible only under the setting conditions with Voltage: 60~80kV, Current: 60~100μA, Time: within 1min
- Don’t do the REFLOW or REWORK process after X-ray inspection
- BUT, post-baking (at 105°C for 2hrs) after X-ray inspection is recommended for stabilizing SMD microphone

11-2 Cleaning process

- Don’t do the cleaning process with any kind of volatile solvent (Acetone, TCE, alcohol, etc.), water, or detergent
→ Possible only for the purpose of removing any dust or particle only with tissue or cotton tip without direct contact to the microphone

11-3 Router process on Printed Circuit Board after reflow

- It’s possible to affect the acoustic properties of SMD microphone, when any particle gets into the SMD microphone inside through sound holes
12. PACKAGE
12.1 Reel Dimension & Taping Specification
12.2 Recommended Metal Mask (Stencil Design) and Land Pattern

Metal Mask Pattern

- Opening for solder cream
 - thickness of metal mask: 0.1 mm

Soldering Surface – Land Pattern

(Unit: mm)
Microphone Technology Leadership
Microphone Technology Leadership
Microphone Technology Leadership